The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Series in Statistics)
Home » Books » Science » Mathematics » Statistics » General

The Elements of Statistical Learning

Data Mining, Inference, and Prediction (Springer Series in Statistics)

By Trevor Hastie, Robert Tibshirani, Jerome Friedman

Elsewhere $175 $119   Save $56.00 (32%)
Free Shipping Worldwide
Ships from UK
Rating:
 
Register or sign-in to rate and get recommendations.
Format: Hardback, 768 pages, 2nd 2009. Corr. 3rd Edition
Other Information: 600 colour illustrations
Published In: United States, 09 February 2009
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide" data (p bigger than n), including multiple testing and false discovery rates.

Table of Contents

Introduction.- Overview of supervised learning.- Linear methods for regression.- Linear methods for classification.- Basis expansions and regularization.- Kernel smoothing methods.- Model assessment and selection.- Model inference and averaging.- Additive models, trees, and related methods.- Boosting and additive trees.- Neural networks.- Support vector machines and flexible discriminants.- Prototype methods and nearest-neighbors.- Unsupervised learning.

About the Author

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Reviews

From the reviews: "Like the first edition, the current one is a welcome edition to researchers and academicians equally!. Almost all of the chapters are revised.! The Material is nicely reorganized and repackaged, with the general layout being the same as that of the first edition.! If you bought the first edition, I suggest that you buy the second editon for maximum effect, and if you haven't, then I still strongly recommend you have this book at your desk. Is it a good investment, statistically speaking!" (Book Review Editor, Technometrics, August 2009, VOL. 51, NO. 3) From the reviews of the second edition: "This second edition pays tribute to the many developments in recent years in this field, and new material was added to several existing chapters as well as four new chapters ! were included. ! These additions make this book worthwhile to obtain ! . In general this is a well written book which gives a good overview on statistical learning and can be recommended to everyone interested in this field. The book is so comprehensive that it offers material for several courses." (Klaus Nordhausen, International Statistical Review, Vol. 77 (3), 2009)

EAN: 9780387848570
ISBN: 0387848576
Publisher: Springer-Verlag New York Inc.
Dimensions: 23.37 x 15.75 x 3.81 centimeters (1.50 kg)
Age Range: 15+ years
Tell a friend

Their Email:

Review this Product

BAD GOOD
 

Related Searches

 

This item ships from and is sold by Fishpond World Ltd.