Discovering Statistics Using R

By

Rating

Product Description

Product Details

Why Is My Evil Lecturer Forcing Me to Learn Statistics? What will this chapter tell me? What the hell am I doing here? I don't belong here Initial observation: finding something that needs explaining Generating theories and testing them Data collection 1: what to measure Data collection 2: how to measure Analysing data What have I discovered about statistics? Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Everything You Ever Wanted to Know About Statistics (Well, Sort of) What will this chapter tell me? Building statistical models Populations and samples Simple statistical models Going beyond the data Using statistical models to test research questions What have I discovered about statistics? Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research The R Environment What will this chapter tell me? Before you start Getting started Using R Getting data into R Entering data with R Commander Using other software to enter and edit data Saving Data Manipulating Data What have I discovered about statistics? R Packages Used in This Chapter R Functions Used in This Chapter Key terms that I've discovered Smart Alex's Tasks Further reading Exploring Data with Graphs What will this chapter tell me? The art of presenting data Packages used in this chapter Introducing ggplot2 Graphing relationships: the scatterplot Histograms: a good way to spot obvious problems Boxplots (box-whisker diagrams) Density plots Graphing means Themes and options What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Exploring Assumptions What will this chapter tell me? What are assumptions? Assumptions of parametric data Packages used in this chapter The assumption of normality Testing whether a distribution is normal Testing for homogeneity of variance Correcting problems in the data What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Correlation What will this chapter tell me? Looking at relationships How do we measure relationships? Data entry for correlation analysis Bivariate correlation Partial correlation Comparing correlations Calculating the effect size How to report correlation coefficents What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Regression What will this chapter tell me? An Introduction to regression Packages used in this chapter General procedure for regression in R Interpreting a simple regression Multiple regression: the basics How accurate is my regression model? How to do multiple regression using R Commander and R Testing the accuracy of your regression model Robust regression: bootstrapping How to report multiple regression Categorical predictors and multiple regression What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Logistic Regression What will this chapter tell me? Background to logistic regression What are the principles behind logistic regression? Assumptions and things that can go wrong Packages used in this chapter Binary logistic regression: an example that will make you feel eel How to report logistic regression Testing assumptions: another example Predicting several categories: multinomial logistic regression What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Comparing Two Means What will this chapter tell me? Packages used in this chapter Looking at differences The t-test The independent t-test The dependent t-test Between groups or repeated measures? What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Comparing Several Means: ANOVA (GLM 1) What will this chapter tell me? The theory behind ANOVA Assumptions of ANOVA Planned contrasts Post hoc procedures One-way ANOVA using R Calculating the effect size Reporting results from one-way independent ANOVA What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Analysis of Covariance, ANCOVA (GLM 2) What will this chapter tell me? What is ANCOVA? Assumptions and issues in ANCOVA ANCOVA using R Robust ANCOVA Calculating the effect size Reporting results What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Factorial ANOVA (GLM 3) What will this chapter tell me? Theory of factorial ANOVA (independant design) Factorial ANOVA as regression Two-Way ANOVA: Behind the scenes Factorial ANOVA using R Interpreting interaction graphs Robust factorial ANOVA Calculating effect sizes Reporting the results of two-way ANOVA What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Repeated-Measures Designs (GLM 4) What will this chapter tell me? Introduction to repeated-measures designs Theory of one-way repeated-measures ANOVA One-way repeated measures designs using R Effect sizes for repeated measures designs Reporting one-way repeated measures designs Factorisal repeated measures designs Effect Sizes for factorial repeated measures designs Reporting the results from factorial repeated measures designs What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Mixed Designs (GLM 5) What will this chapter tell me? Mixed designs What do men and women look for in a partner? Entering and exploring your data Mixed ANOVA Mixed designs as a GLM Calculating effect sizes Reporting the results of mixed ANOVA Robust analysis for mixed designs What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Non-Parametric Tests What will this chapter tell me? When to use non-parametric tests Packages used in this chapter Comparing two independent conditions: the Wilcoxon rank-sum test Comparing two related conditions: the Wilcoxon signed-rank test Differences between several independent groups: the Kruskal-Wallis test Differences between several related groups: Friedman's ANOVA What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Multivariate Analysis of Variance (MANOVA) What will this chapter tell me? When to use MANOVA Introduction: similarities and differences to ANOVA Theory of MANOVA Practical issues when conducting MANOVA MANOVA using R Robust MANOVA Reporting results from MANOVA Following up MANOVA with discriminant analysis Reporting results from discriminant analysis Some final remarks What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Exploratory Factor Analysis What will this chapter tell me? When to use factor analysis Factors Research example Running the analysis with R Commander Running the analysis with R Factor scores How to report factor analysis Reliability analysis Reporting reliability analysis What have I discovered about statistics? R Packages Used in This Chapter R Functions Used in This Chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Categorical Data What will this chapter tell me? Packages used in this chapter Analysing categorical data Theory of Analysing Categorical Data Assumptions of the chi-square test Doing the chi-square test using R Several categorical variables: loglinear analysis Assumptions in loglinear analysis Loglinear analysis using R Following up loglinear analysis Effect sizes in loglinear analysis Reporting the results of loglinear analysis What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Multilevel Linear Models What will this chapter tell me? Hierarchical data Theory of multilevel linear models The multilevel model Some practical issues Multilevel modelling on R Growth models How to report a multilevel model What have I discovered about statistics? R packages used in this chapter R functions used in this chapter Key terms that I've discovered Smart Alex's tasks Further reading Interesting real research Epilogue: Life After Discovering Statistics Troubleshooting R Glossary Appendix Table of the standard normal distribution Critical Values of the t-Distribution Critical Values of the F-Distribution Critical Values of the chi-square Distribution References

Andy Field is Professor of Quantitative Methods at the University of Sussex. He has published widely (100+ research papers, 29 book chapters, and 17 books in various editions) in the areas of child anxiety and psychological methods and statistics. His current research interests focus on barriers to learning mathematics and statistics. He is internationally known as a statistics educator. He has written several widely used statistics textbooks including Discovering Statistics Using IBM SPSS Statistics (winner of the 2007 British Psychological Society book award), Discovering Statistics Using R, and An Adventure in Statistics (shortlisted for the British Psychological Society book award, 2017; British Book Design and Production Awards, primary, secondary and tertiary education category, 2016; and the Association of Learned & Professional Society Publishers Award for innovation in publishing, 2016), which teaches statistics through a fictional narrative and uses graphic novel elements. He has also written the adventr and discovr packages for the statistics software R that teach statistics and R through interactive tutorials. His uncontrollable enthusiasm for teaching statistics to psychologists has led to teaching awards from the University of Sussex (2001, 2015, 2016, 2018, 2019), the British Psychological Society (2006) and a prestigious UK National Teaching fellowship (2010). He's done the usual academic things: had grants, been on editorial boards, done lots of admin/service but he finds it tedious trying to remember this stuff. None of them matter anyway because in the unlikely event that you've ever heard of him it'll be as the 'Stats book guy'. In his spare time, he plays the drums very noisily in a heavy metal band, and walks his cocker spaniel, both of which he finds therapeutic.

In statistics, R is the way of the future. The big boys and girls
have known this for some time: There are now millions of R users in
academia and industry. R is free (as in no cost) and free (as in
speech). Andy, Jeremy, and Zoe's book now makes R accessible to the
little boys and girls like me and my students. Soon all classes in
statistics will be taught in R. I have been teaching R to
psychologists for several years and so I have been waiting for this
book for some time. The book is excellent, and it is now the course
text for all my statistics classes. I'm pretty sure the book
provides all you need to go from statistical novice to working
researcher. Take, for example, the chapter on t-tests. The chapter
explains how to compare the means of two groups from scratch. It
explains the logic behind the tests, it explains how to do the
tests in R with a complete worked example, which papers to read in
the unlikely event you do need to go further, and it explains what
you need to write in your practical report or paper. But it also
goes further, and explains how t-tests and regression are
related---and are really the same thing---as part of the general
linear model. So this book offers not just the step-by-step
guidance needed to complete a particular test, but it also offers
the chance to reach the zen state of total statistical
understanding.

**Prof. Neil Stewart
Warwick University** Field's Discovering Statistics is popular
with students for making a sometimes deemed inaccessible topic
accessible, in a fun way. In Discovering Statistics Using R, the
authors have managed to do this using a statistics package that is
known to be powerful, but sometimes deemed just as inaccessible to
the uninitiated, all the while staying true to Field's off-kilter
approach.

University of Amsterdam

AnimJournal of Animal Behaviour

"

The main strength of this book is that it presents a lot of information in an accessible, engaging and irreverent way. The style is informal with interesting excursions into the history of statistics and psychology. There is reference to research papers which illustrate the methods explained, and are also very entertaining. The authors manage to pull off the Herculean task of teaching statistics through the medium of R... All in all, an invaluable resource. -- Paul Webb

Ask a Question About this Product More... |

Look for similar items by category

People also searched for

Item ships from and is sold by Fishpond World Ltd.

↑

Back to top